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We report experiments and model simulations of patterns of parametrically excited capillary ripples in a
large aspect-ratio cell with thin horizontal layer of viscous fluid subjected to sinusoidal vertical oscillations.
We found stable rotating spirals with different topological charges in the parameter range where steady straight
rolls were observed previously. Formation of multiarmed spirals via dislocations approaching a target core was
observed. The direction of the spiral rotation depends on its chirality and is always consistent with wave
propagation towards the core. Wave drift towards the spiral core is associated with the shear flow which is
generated near the walls by rapidly decaying viscous surface waves.@S1063-651X~96!02911-X#

PACS number~s!: 47.54.1r, 47.35.1i

Capillary ripples parametrically excited by an oscillating
gravity field ~Faraday experiment@1#! is a very convenient
and popular wave system for understanding of many pattern
formation phenomena, including temporal@2# and spatiotem-
poral chaos@3,4#, formation of crystalline@4–6# and quasi-
crystalline surface patterns@5,7#, and defect dynamics
@8–10#.

In this paper we report results of experimental and nu-
merical study of stationary rotating spirals, targets, and de-
fects in a large aspect-ratio system@G5(diameter)/
(height).30#. One aspect of wave patterns in Faraday ex-
periment that distinguishes them from patterns in other wave
systems~autocatalytic chemical reactions@11,12#, Rayleigh-
Bénard convection in binary fluids@13,14#, neuronlike media
@15#! is that they are composed of pairs of counterpropagat-
ing waves. In systems with reflection symmetry, they have
equal frequencies~half of the fundamental frequency! and
opposite wave vectors. The sum of the phases of these waves
is conserved in the whole space and is equal to the phase of
the homogeneous oscillating pumping field. Therefore the
only ‘‘allowed’’ patterns of capillary ripples appear to be
standing waves or superposition of several standing waves.
Various patterns of this type were observed in Faraday ex-
periment in different parameter regions@4–6#. Nevertheless,
our present findings demonstrate the unexpected phenom-
enon: under certain conditions, patterns of slowly drifting
standing waves arise, such as rotating spirals and contracting
targets. These patterns appear within a parameter range
where plane standing waves are stationary. Independent of
the chirality of the spiral, waves always drift towards the
core. We argue that the mechanism of this slow drift is as-
sociated with small near-wall shear flow which near the sur-
face is always directed away from the wall. It is induced by
a surface wave at the fundamental frequency excited by the
oscillating meniscus@16#. This high-frequency wave decays
rapidly off the wall and transforms its momentum into the
shear flow. This flow is observed even below the threshold of
parametrical instability. The shear flow is localized near the
walls of the cell, however, it affects the bulk of the cell by
sending additional ‘‘rolls’’ and therefore moving the wave
number away from its selected value at a given frequency
~‘‘wave-vector frustration’’!. The frustrated pattern tries to

restore its wave number by eliminating a roll which is near
the core of the spiral~or target!, after which the process
repeats. This mechanism is somewhat similar to the mecha-
nism of generating traveling axisymmetric rolls in small
aspect-ratio system@17# and rotating spirals@18# in large
aspect-ratio Rayleigh-Be´nard convection in Boussinesq fluid.
In both cases a driving force for roll motion is the wave
number frustration because the boundary selects the wave
number differing from the wave number selected by the core
of a spiral or target. In our case, the boundary serves as a
phase source, near-wall shear flow ‘‘squeezes’’ waves in the
bulk by sending in additional waves, and therefore frustrates
the wave number which is selected by the parametric insta-
bility at a given pumping frequency. The qualitative features
of the process do not depend on the form of the cavity—we
observed spiral rotation and target contraction in both round
and square cells.

The scheme of the experiment is described in detail in
@10#. Measurements were performed in a round cell 16 cm in
diameter and in a square cell with side 11 cm. General sur-
vey of various patterns was carried out in either a mixture of
glycerol and water or silicon oils with different viscosities
~from n50.05cm2/sec ton52.0cm2/sec!. The depth of the
layer varied between 0.3 and 1 cm, the pumping frequency
varied from 10 to 180 Hz. Detailed studies of spirals and
targets were performed using silicon oil with viscosity
n51.0cm2/sec, densityr50.97g/cm3, and surface tension
coefficients520.5 dyn/cm~all of the data are given for the
temperature of 20 °C!. The depth of the liquid layer was
h50.5 cm, and the wavelength of the patterns isl 50.85 cm
~pumping frequencyf 0556 Hz!. For small enough viscosity
and largehl21 square patterns are observed@3#, for smaller
hl21 hexagons appear~see also@6#!. For largehl21 and
n, depending on initial conditions, either standing plane
waves or targets and spirals could be observed. The cross-
over from squares to stripes due to increasing viscosity of
fluid was also observed by Daudetet al. @19#, however, they
did not observe targets and spirals.

As we mentioned earlier, whereas plane standing waves
are completely stationary~nodes and antinodes do not
move!, standing waves forming targets and spirals drift
slowly toward the core. The speed of the drift depends
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strongly on the magnitude of vertical oscillations, as shown
in Fig. 1. On the other hand, wave drift phase velocity de-
pends sensitively on the profile of the side walls of the cell.
The drift velocity is maximal for a straight vertical wall, and
is reduced for an oblique wall and a wall with a step. We
hypothesize that the wave drift is related to a shear flow
produced near the wall by rapidly decaying surface waves at
the fundamental frequency, generated by an oscillating me-
niscus. This shear flow is indeed observed even in the sub-
critical regime when the parametrical instability was absent.
Near the threshold, the magnitude of velocity of the shear
flow was'0.5 mm/sec. The vertical structure of the flow
near the wall is sketched in the insets to Fig. 1. Clearly, the
average mass transport through any azimuthal cross section
of the cell must be zero in stationary conditions and therefore
off-wall flow near the surface is compensated by a reverse
flow near the bottom. However, since waves are localized
near the surface, the near-surface part of the flow is more
essential for wave drift than the near-bottom part. Both con-
tracting targets and rotating multiarmed spirals persisted for
a long time~a few hours! in the cavity.

Multiarmed spirals with different values of topological
charge emerge as a result of dislocations interacting with the
background target pattern. Dislocation pairs can be easily
produced by perturbing rolls at the periphery of the target.
One dislocation of the pair quickly disappears at the wall,
and another moves towards the center along some curved
trajectory~see Fig. 2!. Which dislocation moves to the wall,
and which to the center, depends on details of initial pertur-
bation, and varied from event to event, so spirals of different
chirality could be produced. The velocity of the defect in-
creases as it approaches the core. This phenomenon is quali-
tatively similar to the interaction of dislocations with targets
in convective patterns at low Prandl number@20,13#. When
we introduce the several defects on the target we observed
stable multiarmed spirals with topological charge ranging
from 1 to 7. In Fig. 2 the evolution of a target with four
dislocations~two positive and two negative! is shown. A

spiral is formed when one of the defects is already at the
center while the others are still on the periphery@Fig. 2~b!#,
and later@Fig. 2~c!# a target is restored when all the disloca-
tions annihilate at the center. In another experiment, a two-
armed spiral was formed and persisted for a long time@Fig.
2~d!#.

We have investigated numerically phenomena described
above within the model equation for the complex order pa-
rameterc(r ,t) which is introduced as follows:

j~r ,t !5c~r ,t !exp~ iv0t !1c̄~r ,t !exp~2 iv0t !. ~1!

Here j(r ,t) is instantaneous deviation of the fluid surface,
c(r ,t) is the slowly varying in time amplitude of the para-
metrically excited capillary patterns (2v0 is the forcing fre-
quency!, and the bar refers to the complex conjugate. With
this choice of the complex order parameter, we eliminate fast
temporal oscillations, but retain the spatial structure of pat-
terns unconstrained, which enables us to study different geo-
metrical configurations of capillary ripples within the frame-
work of one model equation.

The model equation, which incorporates basic features of
parametrical instability, dispersion of surface capillary
waves, viscous dissipation, and nonlinearity can be written in
the following form:

]c

]t
5 igc2n¹2c2~11 ia!ucu2c1 ik~¹21k0

2!c

2~u•¹!c. ~2!

FIG. 1. Velocity of wave drift~measured by node displacement!
as a function of magnitude of vertical acceleration for two different
profiles of side walls. Inset: Sketches of the vertical profiles of the
side wall and the structure of the shear flow.

FIG. 2. Series of snapshots of Faraday ripples in laboratory
experiment:~a!—a target with four dislocations~two positive and
two negative!; ~b!—one dislocation is attracted to the target core,
spiral is formed;~c!—all dislocations have been attracted to the
center and annihilated, perfect target reappeared;~a!, ~b!, and~c! are
separated by 2.0 sec;~d!—asymptotic state of another experiment
where a three-armed spiral was formed and rotated for a long time
~one period of a standing wave corresponds to two white and two
dark stripes on the photos due to time averaging!.

5038 54KIYASHKO, KORZINOV, RABINOVICH, AND TSIMRING



Hereg is a forcing magnitude,k is the dispersion parameter,
and u is the velocity of the shear flow weighted with the
surface wave vertical mode distribution. Linear terms in this
equation can be derived from the dispersion relation for cap-
illary waves under parametric excitation, expanded near
v5v0 ,k5k0. The dispersion relation for free capillary
waves in nondimensional form readsv25k3, therefore
k05v0

2/3, k53v0/4k0
2. The nonlinear term cannot be de-

rived rigorously, as in other Swift-Hohenberg type models,
and has been addedad hocto account for stabilization of the
parametric instability. The imaginary part of nonlinear coef-
ficient a describes nonlinear frequency shift~see also@21#!.
The last term in the right-hand side of Eq.~2! describes shear
flow transport near the walls of the cavity.

Equation~2! with periodic boundary conditions was stud-
ied numerically using a pseudospectral split-step method
with 2563256 collocation points, domain sized5200, and
integration time step 0.05. To simulate waves in a cir-
cular cavity, we ramped linear dissipation outside the
circle of radius r 0586, i.e., n5n0 ,r,r 0 and
n5n0@11k(r2r 0)#,r.r 0, wherek varied between 0.5 and
1.0.

For g.m trivial statec50 is unstable with respect to
perturbations with wave numbers neark0. Numerical simu-
lations show that at the nonlinear stage, these perturbations
give rise to various cellular patterns, including plane waves,
targets, and spirals. Without the shear flow term (u[0),
these patterns remain stationary even when nonlinear coeffi-
cients in~2! are complex. Nonlinear frequency shift}a only
leads to deviation of the selected wave number fromk5k0.
@In systems with ordinary~nonparametric! pattern-forming
instabilities any nonpotential effect leads to wave propaga-
tion.# However, when near-wall shear flow is introduced in
~2!, targets and spirals begin to drift slowly toward the cen-
ter.

We assumed that the flow had radial direction and was
azimuthally symmetric,u5u(r ) r̂ . We used the following
profile for flow velocityu(r ):

u~r !5u0exp@j~r2r 0!# ~3!

and measured rolls velocity for differentj andu0. Note that
j@r 0

21 so the shear flow is absent in the bulk, still rolls are
moving throughout the integration domain. The results of
velocity calculations are presented in Fig. 3. We observe that
the phase velocity of rolls grows linearly withu0 as should
be expected. We also tried different stepwise profiles of ra-

dial velocity as a function ofr ; the qualitative behavior of
patterns is not sensitive to the particular choice of the profile.

In computer simulations we also observed spiral forma-
tion via dislocation motion to the core of a target. When
several dislocations are placed on the target, they all are
attracted to the center, and a multiarmed spiral is formed
with the topological charge equal to a sum of topological
charges of dislocations. Several snapshots of dislocation mo-
tion are shown in Fig. 4. Dislocation motion is independent
of wave propagation: dislocation usually moves faster than
rolls and is attracted to the core even when shear flow is
absent and a target is stationary.

The mechanism of dislocation motion can be elucidated
using the phase approximation for Eq.~2! with a50. Far
from the cores of target and dislocation, the complex order
parameter can be written in the form

c~r ,t !5@A~r !1da1#exp~ ik0r1 if1!1 i @A~r !1da2#

3exp~2 ik0r1 if2!, ~4!

FIG. 3. Phase velocity of waves as a function
of shear flow magnitudeu0 ~a! and inverse scale
j ~b! from numerical simulations of~2!. Param-
eters of simulations: g51.0,n50.5,a50.0,
k51.0,k051,j50.1. In ~a!, j50.1, in ~b!,
u051.0.

FIG. 4. Snapshots of multiarmed spiral formation in numerical
simulation. A target with two dislocations on periphery was taken
as initial condition, parameters of the models are given in the cap-
tion to Fig. 3;~a! t510; ~b! t5100; ~c! t5200; ~d! t5300. Spiral
rotation is obvious from comparison of~c! and ~d!.
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whereA(r )5Ag2nk0
22kk0 /r

2 with the accuracyO(r22).
Substitution of~4! into ~2! and eliminating the amplitude
perturbation da6 in the first approximation yields two
coupled phase equations

]f1

]t
52gsin~f11f2!1kk0

]f1

]r
1nS ]2f1

]r 2
1
1

r

]f1

]r D ,
~5!

]f2

]t
52gsin~f11f2!2kk0

]f2

]r
1nS ]2f2

]r 2
1
1

r

]f2

]r D .
~6!

In the limit of strong parametric coupling of counterpropa-
gating waves, the sum of phasesF5f11f2 is small and
follows adiabatically slow variations of phase difference
D5f12f2 far from the cores of the target and disloca-
tions. This allows one to eliminateF and obtain one equa-
tion for D,

]D

]t
5S k2k0

2

2g
1n D ]2D

]r 2
1

n

r

]D

]r
. ~7!

Although this equation is not exactly variational, for strong
parametric coupling it becomes variational with potential
F@D#5n*D r

2rdr . In this limit it is equivalent to the varia-
tional phase equation for large scale phase perturbations of
target patterns deduced from the Swift-Hohenberg equation
~see @22#!. In @22# it was shown that a dislocation experi-

ences a Peach-Koehler type force directed perpendicular to
the curved rolls which is inversely proportional to the dis-
tance from the center. This force leads to dislocation gliding
towards the core of a target. The same effect takes place for
dislocation in parametrically excited standing waves.

In summary, we investigated pattern formation in a Fara-
day experiment in a large aspect-ratio container. In the pa-
rameter range corresponding to standing straight rolls, we
discovered multiarmed rotating spiral waves. Spirals were
formed from a target pattern after a dislocation pair was cre-
ated near the side wall. One of the dislocations quickly dis-
appears on the wall, and another moves towards the center,
and eventually a single-armed spiral is formed. If several
dislocations are produced, a multiarmed spiral appears. Spi-
ral rotation is caused by a near-wall shear flow directed to-
wards the center of the cell. This shear flow is produced by
decaying surface capillary waves at the fundamental fre-
quency which are generated by oscillating meniscus. The
near-wall shear flow provides wave-vector frustration in the
bulk, which in turn drives the waves towards the center. We
reproduced this scenario in numerical simulations with our
phenomenological model Eq.~2! which describes parametri-
cally excited waves in rotationally invariant system.
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